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Dynamics of pinned interfaces with inertia
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We introduce velocity dependent pinning into two models which are known to be in the universality class of
the directed percolation depinning~DPD! model. The effective internal force acting on any point of the
interface is enchanced by a factorf at that point of the interface which has last moved. This causes the effective
roughness exponent to cross over continuously from the DPD value of 0.63, to unity in the nondissipative limit
of f→`, while the growth exponent tends to 3/4. DPD scaling is recovered for length scales above a persis-
tence length which grows with the enchancement factor asf c, with a new exponentc.1.3.
@S1063-651X~99!16611-X#

PACS number~s!: 68.10.Gw, 68.35.Ct, 05.45.2a, 05.65.1b
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The dynamics of interfaces in far-from-equilibrium sy
tems has attracted a great deal of attention lately. Ro
interfaces in systems with quenched disorder@1,2# arise in
phenomena as diverse as the imbibition of liquids by por
media @3# and the evolution of species@4#. One feature of
obvious interest in the critical dynamics of driven interfac
@5# is the velocity of the interface, how it behaves with t
driving force near the threshold, and how and whethe
depends on the roughness~or conversely the stiffness! of the
interface and vice versa. On the other hand, for invas
percolation and other discrete models which can be der
from it, such as the Sneppen model@6#, there is no tunable
parameter corresponding to a driving force. The front, s
ject to various constraints~as, for example, the constrain
that the slopes not exceed unity in absolute value, in
Sneppen model! advances with constant average velocity.

In this paper we introduce an inertial component into
Sneppen model@6# and a variant of the directed percolatio
depinning model@7–9#, by giving that interfacial point
which has last moved an enhanced probability to keep
moving. This can also be regarded as modeling a velo
dependence in the dissipation or the pinning strength in
system, as for example in shear thinning observed in c
plex fluids @10#. We investigate how the mean velocity an
the roughness exponent in these systems, both known t
in the same universality class in 111 dimensions@11# de-
pend upon this enchancement factor.

The nonlinear dissipative equation of motion in one
mension,

m
]2h~x,t !

]t2 52g
]h~x,t !

]t
1 ñ¹2h1

l̃

2 S ]h

]xD 2

1h̃~x,h!1F̃,

~1!

whereg, ñ, and l̃ are constants andh̃ a d-correlated noise
term, can be examined under simplifying assumptions in
der to understand the limiting behaviors. In the absence
noise, and in the limit ofn50, l̃50, this equation can eas
ily be solved to show that after a transient regime with e
ponential relaxation, with the relaxation timet5m/g, the
average position of the front becomes a linear function
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time, i.e., the velocity saturates to a constant valuev f

5F̃/g. In other words, the effect of the inertial term is on
transient, and the final velocity is independent ofm. Dividing
through byg and assuming from the start that the coefficie
of the acceleration is negligibly small, one ends up with t
Kardar, Parisi, Zhang~KPZ! equation with quenched nois
@12,13#, which is commonly believed@2# to correspond to the
continuum version~or long wavelength limit! of driven in-
terfaces in quenched random media.

]h~x,t !

]t
5n¹2h1

l

2 S ]h

]xD 2

1h~x,h!1F. ~2!

In the presence of the nonlinearity (lÞ0), with surface ten-
sionnÞ0, numerically integrating Eq.~2!, one finds that the
velocity of the center of mass of the interface,v5]h̄/]t
saturates to a constant value, which is dependent only oF,
the ‘‘constant drive’’ @5,14# but independent ofn, i.e., the
stiffness of the interface.

Now we turn to discrete, self-organized models, t
Sneppen model@6# and the directed percolation depinnin
~DPD! model@7–9#. We remind the reader that the Snepp
model @6# is defined via the following growth rules~i! con-
duct a nonlocal search for the largest value of the quenc
random variableh(x,h) and move the interface by one un
at the value ofx which maximizesh. ~ii ! Then check the
slopes on either side of point that has just moved; move
neighboring points as well, until all slopes are<1 in abso-
lute value. The motion of many such spatially contiguo
sites is termed an ‘‘avalanche.’’ This is a model of the ‘‘co
stant current’’ type, where ‘‘time’’ is advanced by one ste
every time any point on the interface is moved by one latt
spacing, so that the interface velocity is constant. No sa
factory continuum limit exists for such models, although
has been argued@2# that it is nevertheless described by a
equation of type~2! whereF50 and]h/]tÞ0 only at thatx
where

F int5n¹2h1
l

2 S ]h

]xD 2

1h~x,h! ~3!

has a maximum.
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We have also studied the directed percolation depinn
model, where no constraint is introduced on the slopes.
growth site chosen by the maximization process can ne
bor the interface either in the forward direction, or can be
its right or left. In the latter two cases, the interface is u
dated by filling that site and all the sites below it.

We now introduce an ‘‘inertial effect’’ into both dynam
ics, by allowing the motion not to be damped to zero at o
time step, but giving that point which has last triggered
event an advantage, so that it can keep on moving in su
quent time steps. We do this by multiplying the quench
random variables neighboring the growth site which was
selected by a factorf .1. It can be seen that in the con
tinuum language, this is equivalent to introducing a veloci
dependent coefficient before the noise term in Eq.~3!, viz.,

F int5n¹2h1
l

2 S ]h

]xD 2

1F11~ f 21!QS ]h

]t D Gh~x,h!, ~4!

whereQ is the step function, withQ(0)<0 andQ(s)51
for s.0. We have also investigated the effect of choos
f ,1, namely discouraging points which have last spe
headed an event. Both these regimes are of physical inte
since, for example both shear thinning and shear thicken
are observed in nonlinear flow behavior@10#. The parameter
f can be viewed as interpolating between the perfectly di
pative (f→0) and nondissipative (f→`) limits of the dy-
namics. In the nondissipative limit, once an avalanche
started it persists forever, or, in other words, the interfac
no longer pinned.

A natural reinterpretation of the dynamics is to keep
time fixed until an event, triggered by the quenched rand
variableh at any one point, terminates. This modification
the definition of time does not lead to new dynamics in
long time limit; although the average velocity exhibits flu

tuations on small time scales, one still hash̄5vt1constt
over large time scales, as can be seen in Fig. 1, and
‘‘constant current’’ picture still applies on the average. T
fluctuations about the mean velocity grow withf ~see Fig.
1~b! and ~c!. The mean velocity of the front,v, grows lin-
early with f for small f, eventually saturating to 1 forf→`
~see Fig. 2! ~Since there is no driving force on the system,v
remains a constant in the nondissipative limit.!

We now consider the effect that ‘‘inertia’’ has on th
roughness of the interface, in the case of the Sneppen m
Recall that on a discrete one-dimensional lattice of lengthL,
the width of the interface over an interval ofl ,L scales as

W5H 1

l (
i

l

@h~ i !2h̄#J 1/2

;l xgS t

l zD , ~5!

wherex is the roughness exponent,z is the dynamical expo-
nent, the crossover functiong(x);const forx@1 andg(x)
;xb for x,1, with the scaling relation for the growth expo
nent, b5x/z. For the default value off 51, the values of
these exponents are known both from extensive simulat
and their relation to directed percolation exponents in 111
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dimensions, andx50.633, b50.63 for relatively short
times, crossing over to 0.960.1 for longer times@2,6,7,9#.

Our simulations on chains of lengthL516 to 1024, with
periodic boundary conditions show that the value ofx as
defined in Eq.~3! with l 5L depends continuously onf,
saturating to the trivial value of 1 in the limf→`. Our re-
sults are shown in Fig. 3, where the log-log plot shows
dependence ofxeff on f. An average of over 20 snapshots f

FIG. 1. In the modified Sneppen model, the center of mass
the interface moves with a constant velocity on the average.
fluctuations are related to the avalanche size distribution.~a! f 51,
~b! f 510, ~c! f 550.

FIG. 2. The average interface velocity as a function of the in
tial parameterf. Averages have been performed over 50 runs,
systems of sizeL5512 and 1024. The fluctuations, which are mu
smaller for small and for extremely large values off, are seen to
persist for intermediate values off. The inset shows the linear be
havior of v with small values off.
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eachL, separated by times longer than decorrelation tim
have been performed.

The limit of f→` is easy to understand, since, in th
limit, there is only one finger which organizes the interfa
into the shape of an isoceles triangle, with the height sim
proportional to the length of the base. Forf ,1, the dynam-
ics is essentially unmodified, since only those rare events
suppressed, which correspond to choosing twice in suc
sion the same point along the interface. One sees from F
that xeff barely deviates from its Sneppen value forf→0.

A closer examination reveals that for eachf, a finite
length scale is introduced into the problem via the aver
longitudinal persistence length,ju , defined as the averag
number of successive times a given tip is advanced.
persistence lengthu obeys an exponential distribution a
shown in Fig. 4,

P~u!;A~ f !exp~2u/ju!, ~6!

with ju; f c. We find thatc51.360.1, andA( f ); f 23.6 for
sufficiently largeL@ f c. For finite systems and largef such
that ju; f c@L/A2, the persistence length is effectively infi
nite; there is simply one peak which grows uninterrupted

The crossover behavior is summarized by the scaling
lation

W; f cgS l

ju
,
L

ju
D , ~7!

where

g~x,y!;H y; y!1

xx; x@1, y@1

x; x!1, y@1

, ~8!

andx takes the Sneppen~DPD! value of 0.63. In Fig. 5, we
have plottedw/ f c vs l / f c for fixed L and differentf on a

FIG. 3. The effective roughness exponent as a function off.
s,

ly

re
s-

. 3

e

e

.
e-

double logarithmic plot. The results are for late times, av
aged over 50 independent runs forL51024 up to 6144, and
2<l <L. One sees that due to the coarse graining of
interface up to length scales comparable with the persiste
length, one hasW;l for l ,ju , whereas at scales large
than the persistence length and sufficiently smaller thanL,
the data collapse for differentf has a common slope of 0.63

The exponentb for the initial growth of the interface
roughness with time can be obtained exactly in the limits

f→0 and f→`. When f !1, for very early times,h̄;h2̄

;( i
t1/L;t/L, yielding W;t1/2, or b51/2. On the other

FIG. 4. The distribution function for the persistence leng
Shown is the double logarithmic plot ofP(u)/ f 23.6 vs u f1.3, for
different values off.

FIG. 5. The scaling function for the width, showing data co
lapse for different values off. One hasw/ f c;l for sufficiently
large f, while w/ f c;l x/ f xc for l . f c, with c.1.3 andx.0.63.
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hand, for f @1 we have W25(2/L)( i
ui 22@(2/L)( i

ui #2,
whereu is equal to the height of the finger in the shape of
isoceles triangle. Sincet.u2, we have, foru/L!1, W
;t3/4, or b53/4.

Finally, it is interesting to remark that forf @1, the
growth of the interface is decorated with oscillations whi
arise trivially from the constraint on the slopes; each adva
of the tip of a finger is accompanied by avalanches of du
tion u that run down both sides of the triangle. Note thau
can grow by unity afterT52u time steps. The ‘‘period’’ of
the nth oscillation isTn52n, for n<L/2. ForTn<t<Tn11,

W~u,t !2W05
2

u S 11
2

uD F S u

4D 2

2S t2
u

4D 2G , ~9!

whereW05u2/48. For large timest.L2/4, there is only one
finger with u fixed at L/2 and the oscillations in Eq.~9!
become strictly periodic.

In conclusion, we have presented an extension of
Sneppen model by introducing a velocity dependent pinn
or equivalently an inertia effect. This leads to a characteri
.

b,

E.

.

n

e
-

e
g,
ic

length scale in the problem, a persistence length which
pends upon the inertial parameter through a scaling lawju

; f c, with c.1.3, and causes a crossover to a different sc
ing regime in the limit of f→`. Previously, Roux and
Hansen studied a model@15# where they allowed the growth
probability to depend on the local curvature, and found
continuous dependence of the effective roughness expon
on this weighting parameter. Since increasingf gives an ad-
vantage to growth at the tips, this persistence effect is ind
similar to a ‘‘curvature driven’’@15,16# growth, althoughn
.0 in Eq. ~4!. However, we are now able to understand t
parameter dependence of the exponents in terms of a c
over phenomenon. The persistence results in coarse gra
of the surface up to scalesl , f c, whereas Sneppen~DPD!
scaling behavior is restored at larger scales.
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