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Dynamics of pinned interfaces with inertia
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We introduce velocity dependent pinning into two models which are known to be in the universality class of
the directed percolation depinnin@PD) model. The effective internal force acting on any point of the
interface is enchanced by a facfat that point of the interface which has last moved. This causes the effective
roughness exponent to cross over continuously from the DPD value of 0.63, to unity in the nondissipative limit
of f—oo, while the growth exponent tends to 3/4. DPD scaling is recovered for length scales above a persis-
tence length which grows with the enchancement factd’asvith a new exponen=1.3.
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The dynamics of interfaces in far-from-equilibrium sys- time, i.e., the velocity saturates to a constant valye
tems has attracted a great deal of attention lately. ROUGBE/,, |n other words, the effect of the inertial term is only
interfaces in systems with quenched disortle@] arise in  ansient, and the final velocity is independentroDividing
phenomena as diverse as the imbibition of liquids by porougrqygh byy and assuming from the start that the coefficient
media[3] and the evolution of speciggl]. One feature of ot the acceleration is negligibly small, one ends up with the
obvious interest in the critical dynamics of driven mterfacesKardar, Parisi, ZhangKPZ) equation with quenched noise

[5] i.s the velocity of the interface, how it behaves with the_[lz,leg, which is commonly believef?] to correspond to the
driving force near the threshold, and how and whether it;,ntinyum versior(or long wavelength limit of driven in-
depends on the roughneigs conversely the stiffneg®f the  (orfaces in quenched random media.

interface and vice versa. On the other hand, for invasion

percolation and other discrete models which can be derived ah(x,t) )\( 2

+ 5(x,h) +F. )

from it, such as the Sneppen model, there is no tunable promb vV2h+ 7| 7%

parameter corresponding to a driving force. The front, sub-

ject to various constraintéas, for example, the constraint |n the presence of the nonlinearity ¢ 0), with surface ten-
that the slopes not exceed unity in absolute value, in thgion »+0, numerically integrating Eq2), one finds that the

Sneppen modgladvances with constant average velocity. velocity of the center of mass of the interface=ah/at

In this paper we introduce an inertial component into theg,1 rates to a constant value, which is dependent onf,on

Sneppen moddl6] and a variant of the directed percolation the “constant drive”[5,14] but independent of, i.e., the
depinning model[7-9], by giving that interfacial point ithess of the interface.

which has last moved an enhanced probability to keep on \ow we turn to discrete, self-organized models, the

moving. This can also be regarded as modeling a veloCitnennen model6] and the directed percolation depinning
dependence in the d|SS||c_)at|on or th_e pinning strength in thﬂDPD) model[7—9]. We remind the reader that the Sneppen
system, as for example in shear thinning observed in comy,oe[6] is defined via the following growth rule$) con-

plex fluids[10]. We investigate how the mean velocity and q,c¢ 4 nonlocal search for the largest value of the quenched

the roughness exponent in these systems, both known 10 Re. 40 variabley(x,h) and move the interface by one unit
in the same universality class in+ll dimensiong11] de- at the value ofx which maximizesy. (i) Then check the

per%(;l] upon It.h's en(;:_ha_nc?_ment fac:_or. f motion i di slopes on either side of point that has just moved; move the
€ nonlinéar dissipative equation of motion in one "neighboring points as well, until all slopes ag€l in abso-

mension, lute value. The motion of many such spatially contiguous
_ sites is termed an “avalanche.” This is a model of the “con-

a?h(x,t) dh(x,t) ~_, ~N[dh 2 ~ stant current” type, where “time” is advanced by one step
Mz =Y 4+ vVoh+ 5(5 +n(x,h)+F, every time any point on the interface is moved by one lattice

(1) spacing, so that the interface velocity is constant. No satis-
factory continuum limit exists for such models, although it
has been arguef®?] that it is nevertheless described by an

wherey, v, and\ are constants anf_} a 5-correlateq| noise equation of typ&?2) whereF=0 anddh/dt#0 only at thatx
term, can be examined under simplifying assumptions in or- here

der to understand the limiting behaviors. In the absence o
noise, and in the limit o=0, X =0, this equation can eas- )

ily be solved to show that after a transient regime with ex- Fin=2V"+ 21 ox
ponential relaxation, with the relaxation time=m/y, the

average position of the front becomes a linear function ohas a maximum.

2
+7(x,h) ()
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We have also studied the directed percolation depinning
model, where no constraint is introduced on the slopes. The
growth site chosen by the maximization process can neigh-
bor the interface either in the forward direction, or can be to
its right or left. In the latter two cases, the interface is up-
dated by filling that site and all the sites below it.

We now introduce an “inertial effect” into both dynam-
ics, by allowing the motion not to be damped to zero at one
time step, but giving that point which has last triggered an
event an advantage, so that it can keep on moving in subse-
qguent time steps. We do this by multiplying the quenched
random variables neighboring the growth site which was last
selected by a factof>1. It can be seen that in the con-
tinuum language, this is equivalent to introducing a velocity-
dependent coefficient before the noise term in @4, viz.,

dh\2
X

lfl@ah
+H({I-1)0| —

) A
Fint: VV h+ E

+ n(x,h), (4)

where © is the step function, witt®(0)<0 andO(s)=1
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FIG. 1. In the modified Sneppen model, the center of mass of
the interface moves with a constant velocity on the average. The

for s>0. We have also investigated the effect of choosing®) f=10, (c) f=50.

f<1, namely discouraging points which have last spear-

fluctuations are related to the avalanche size distribut@nf =1,

headed an event. Both these regimes are of physical intereglimensions, andy=0.633, 8=0.63 for relatively short
since, for example both shear thinning and shear thickeningimes, crossing over to 0290.1 for longer timeg2,6,7,9.

Our simulations on chains of length=16 to 1024, with
f can be viewed as interpolating between the perfectly dissiperiodic boundary conditions show that the valueyofis

are observed in nonlinear flow behav[d0]. The parameter

pative (f—0) and nondissipativef{-c) limits of the dy-

defined in Eqg.(3) with /=L depends continuously of

namics. In the nondissipative limit, once an avalanche isaturating to the trivial value of 1 in the lifa—c. Our re-
started it persists forever, or, in other words, the interface isults are shown in Fig. 3, where the log-log plot shows the

no longer pinned.
A natural reinterpretation of the dynamics is to keep the
time fixed until an event, triggered by the quenched random
variable » at any one point, terminates. This modification in
the definition of time does not lead to new dynamics in the
long time limit; although the average velocity exhibits fluc-

tuations on small time scales, one still has vt+ constt
over large time scales, as can be seen in Fig. 1, and the
“constant current” picture still applies on the average. The
fluctuations about the mean velocity grow witi{see Fig.
1(b) and (c). The mean velocity of the front;, grows lin-
early with f for small f, eventually saturating to 1 fdr— oo

(see Fig. 2 (Since there is no driving force on the systam,
remains a constant in the nondissipative lijnit.

We now consider the effect that “inertia” has on the
roughness of the interface, in the case of the Sneppen model
Recall that on a discrete one-dimensional lattice of leigth
the width of the interface over an interval 6% L scales as

/

1
W=|7Z (5)

w2 t
[h(i)—h]} ~/1g /—)

wherey is the roughness exponeantis the dynamical expo-
nent, the crossover functiam(x) ~const forx>1 andg(x)
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FIG. 2. The average interface velocity as a function of the iner-

tial parameterf. Averages have been performed over 50 runs, on

~x# for x< 1, with the scaling relation for the growth expo- systems of siz& =512 and 1024. The fluctuations, which are much

nent, 3= x/z. For the default value of =1, the values of

smaller for small and for extremely large valuesfpfre seen to

these exponents are known both from extensive simulationgersist for intermediate values 6f The inset shows the linear be-

and their relation to directed percolation exponents i1l

havior of v with small values of.
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FIG. 4. The distribution function for the persistence length.
FIG. 3. The effective roughness exponent as a function of ~ Shown is the double logarithmic plot ¢#(u)/f =3¢ vs uf*s for
different values of.

eachlL, separated by times longer than decorrelation times,
have been performed. double logarithmic plot. The results are for late times, aver-

The limit of f—oc is easy to understand, since, in this aged over 50 independent runs for 1024 up to 6144, and
limit, there is only one finger which organizes the interface2</<L. One sees that due to the coarse graining of the
into the shape of an isoceles triangle, with the height simplyinterface up to length scales comparable with the persistence
proportional to the length of the base. Hor 1, the dynam- length, one hasW~/ for /<¢,, whereas at scales larger
ics is essentially unmodified, since only those rare events artan the persistence length and sufficiently smaller than
suppressed, which correspond to choosing twice in succeshe data collapse for differefithas a common slope of 0.63.
sion the same point along the interface. One sees from Fig. 3 The exponents for the initial growth of the interface
that y.¢ barely deviates from its Sneppen value fer 0. roughness with time can be obtained exactly in the limits of

A closer examination reveals that for eatha finite ¢t .o andf— . Whenf<1, for very early timesh~h?
Ieng_th s.cale is mtroduced into the prpblem via the averag‘iE}l/L%/L, yielding W~t12 or B=1/2. On the other
longitudinal persistence lengtlf,, defined as the average
number of successive times a given tip is advanced. The
persistence lengtlu obeys an exponential distribution as Inuw/ f7)
shown in Fig. 4, .

P(u)~A(f)exp —u/&,), (6) ) //”

with &€,~ . We find thaty=1.3+0.1, andA(f)~f 36 for 2|
sufficiently largeL>f?. For finite systems and lardgeesuch
that&,~f¥> L/\/2, the persistence length is effectively infi-
nite; there is simply one peak which grows uninterruptedly. 0 —
The crossover behavior is summarized by the scaling re-

lation ] i«j ij
/L *7 wee
W~f‘”g(§—u,§—u), (7) i
where “7
y: y<1 | In(4/ £*)
gixy)~{ X5 x=1, ye1, ® T T T T

X, x<1, y>1

. FIG. 5. The scaling function for the width, showing data col-
and y takes the Sneppei®PD) value of 0.63. In Fig. 5, we |apse for different values of One hasw/f%~/ for sufficiently
have plottedw/f? vs //f¥ for fixed L and differentf on a  largef, while w/f¥~/X/fX¥ for />f*, with =~1.3 andy=0.63.
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hand, for f>1 we have W?=(2/L)=!i2—[(2/L)=}i]?, length scale in the problem, a persistence length which de-
whereu is equal to the height of the finger in the shape of anpends upon the inertial parameter through a scaling &w,
isoceles triangle. Sincé=u?, we have, foru/L<1, W  ~f? with =1.3, and causes a crossover to a different scal-
~134 or B=3/4. ing regime in the limit of f—o. Previously, Roux and

Finally, it is interesting to remark that fof>1, the Hansen studied a modgl5] where they allowed the growth

growth of the interface is decorated with oscillations WhiChprobability to depend on the local curvature, and found a
arise trivially from the constraint on the slopes; each advancgontinuous dependence of the effective roughness exponents
of the tip of a finger is accompanied by avalanches of durapn this weighting parameter. Since increasirgives an ad-
tion u that run down both sides of the triangle. Note that yantage to growth at the tips, this persistence effect is indeed
can grow by unity aftell =2u time steps. The “period” of  gmjlar to a “curvature driven’[15,16 growth, althoughw
thenth oscillation isT,=2n, for n<L/2. ForT,<t<Tn.1, >0 in Eq.(4). However, we are now able to understand the
(u)z ( u parameter dependence of the exponents in terms of a cross-

- — t_ -

4 4

, 9) over phenomenon. The persistence results in coarse graining
of the surface up to scaleé<f?¥, whereas SneppeiDPD)
whereW,=u%48. For large times>L2/4, there is only one ~ Scaling behavior is restored at larger scales.
Eggs:nglg'sriitr;/xggri?)tdli_clz and the oscillations in Eq9) It is a pleasure to thank Geoffrey Grinstein for a useful
In conclusion, we héve presented an extension of thé:onve_rsation, and Alex Hansen fqr bringing Rf] to our
Sneppen model by introducing a velocity dependent pinning?trt]ezt'og' AE. ?cékqowledges partial support from the Turk-
or equivalently an inertia effect. This leads to a characteristi¢> /cademy ol SCiences.
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